Searching for Dark Matter with COSINE-100

20th MultiDark | October 25, 2023 Sophia Hollick

Sophia Hollick

50

Mass Distribution in Bullet Cluster

 Lots of cosmological evidence, but what about direct lab observations?

WIMPs and Detection Method

- When a WIMP interacts with an atom in scintillator, a flash of light is given
- Collect these events over time to find an annual signal

DM-nucleus scattering

- DAMA/LIBRA: 250 kg of NaI(TI) operating from 2003 at Gran Sasso
 - Purest Nal(Tl) detectors in DM experiment (1 cpd/kg/keV)
- Observe modulation signal over 20 annual cycles
 - 13σ significance, 2.5 ton yr exposure

XENON10

XENON1

500

WIMP mass $[GeV/c^2]$

1000

Sophia Hollick

- COSINE-100 is located in Y2L Underground Lab 700m under Yangyang, South Korea
- 106 kg of NaI(TI) across 8 detectors
- Data taking began Sept. 2016

COSINE-100 Detector

- 8 low-background Nal(Tl) detectors
- 2200 L liquid scintillator veto
- 3 cm-thick copper box and 20 cm-thick lead shielding
- 37 plastic scintillator panels for 4π muon detection

COSINE-100 3-year Results

- COSINE-100 both agrees with DAMA's results and no modulation
 - Lower background levels are needed to improve sensitivity/statistics
- COSINE-100 4.5yr results to publish soon with improved statistics to 1 keV
 - COSINE-100U underway and see a 45% light yield increase with refurbished crystals

Combining COSINE and ANAIS Data

- Using existing 3-year data for both experiments, a 3σ significance can be achieved
- Such a combination would pressure the DAMA/LIBRA collaboration to release their data as well

Combined Modulation Sensitivity

Yale

COSINE-100 Background Modeling and Subtraction

Backgrounds

Nal(TI) Background Components

- ⁴⁰K and ²¹⁰Pb internal isotopes used to dominate backgrounds
- Cosmogenic isotopes (³H, ²²Na etc.) activated over time

Cosmogenic Isotope Activation Rates

DAMA Claims only this background component! (Time independent)

$$R(t) = \sum_{i} \left[C^{i} + \sum_{j=1}^{8} A^{i}_{j} e^{-\lambda_{j} t} \right] + S_{m} \cos\left(\frac{2\pi(t-t_{0})}{T}\right)$$

• Five detectors fit with:

- Constant from long-lived backgrounds
- Exponential decays from short-lived cosmogenics
- Modulation signal fixed period and phase

Time (In)dependent Background Subtraction Methods

X

- If a background decays exponentially over time, the subtracted background must account for this decay
- If a background does not decay over time (is flat), the subtracted background can be assumed to be the average annual rate

Paper!

Cannot assume backgrounds are unchanging!

• Assumes COSINE-like backgrounds on a DAMA-like experiment

Cycle	Date period	Exposure $(kg \times day)$
1	Sept. 9, 2003 – July 21, 2004	51,405
2	July 21, 2004 – Oct. 28, 2005	52,597
3	Oct. 28, 2005 – July 18, 2006	39,445
4	July 19, 2006 – July 17, 2007	49,377
5	July 17, 2007 - Aug. 29, 2008	66,105
6	Nov. 12, 2008 – Sept. 1, 2009	58,768
7	Dec. 23, 2010 – Sept. 9, 2011	Commissioning
8	Nov. 2, 2011 – Sept. 11, 2012	62,917
9	Oct. 8, 2012 – Sept. 2, 2013	60,586
10	Sept. 8, 2013 – Sept. 1, 2014	73,792
11	Sept. 1, 2014 – Sept. 9, 2015	71,180
12	Sept. 10, 2015 - Aug. 24, 2016	67,527
13	Sept. 7, 2016 - Sept. 25, 2017	75,135

This modulation has opposite phase!

Yale

Shifting Declared Annual Cycles

Cycle	Date period	Exposure $(kg \times day)$
1	Sept. 9, 2003 – July 21, 2004	51,405
2	July 21, 2004 - Oct. 28, 2005	52,597
3	Oct. 28, 2005 - July 18, 2006	39,445
4	July 19, 2006 - July 17, 2007	49,377
5	July 17, 2007 - Aug. 29, 2008	66,105
6	Nov. 12, 2008 - Sept. 1, 2009	58,768
7	Dec. 23, 2010 - Sept. 9, 2011	Commissioning
8	Nov. 2, 2011 – Sept. 11, 2012	62,917
9	Oct. 8, 2012 - Sept. 2, 2013	60,586
10	Sept. 8, 2013 - Sept. 1, 2014	73,792
11	Sept. 1, 2014 - Sept. 9, 2015	71,180
12	Sept. 10, 2015 - Aug. 24, 2016	67,527
13	Sept. 7, 2016 - Sept. 25, 2017	75,135

	Cycle	Date Period	Exposure (kg x day)
=	1	March 10, 2004 - Jan. 20, 2005	51,405
	2	Jan. 20, 2005 - April 29, 2006	52,597
	3	April 29, 2006 - Jan. 17, 2007	39,445
	4	Jan. 18, 2007 - Jan. 16, 2008	49,377
	5	Jan. 16, 2008 - Feb. 28, 2009	66,105
	6	May 14, 2009 - March 3, 2010	58,768
	7	June 24, 2011 - March 10, 2012	Commissioning
	8	May 3, 2012 - March 13, 2013	62,917
	9	April 9, 2013 - March 4, 2014	60,586
	10	March 10, 2014 - March 3, 2015	73,792
	11	March 3, 2015 - March 10, 2016	71,180
	12	March 11, 2016 - Feb. 23, 2017	$67,\!527$
	13	March 9, 2017 - March 27, 2018	$75,\!135$

+ 183 days (π)

Yale

Sophia Hollick

Shifting Phase with Shifting Annual Cycles

Simulated DAMA from COSINE-100 Backgrounds

- Modulation phase clearly dependent on declared annual cycles
 - Vertical lines show the outline for the cycles
 - The modulation peaks move inline with the shifting cycle times
 - Amplitude roughly consistent

Optimal Fit from Shifted Cycles at 183 days

• A compelling way to achieve DAMA's phase is to shift annual cycles by 183 days (π)

Concluding Remarks

- COSINE-100 will soon publish 5 yr modulation search
 - Combining with ANAIS-112 can lead to competitive sensitivity for testing DAMA/LIBRA
- DAMA/LIBRA's background subtraction procedure does not work with time-dependent backgrounds
 - Would like to see DAMA/LIBRA background data and detector efficiencies to confirm valid background modelling

Thank you for your attention!

Acknowledgements

The Institute for Basic Science (IBS) under project code IBS-R016-A1 and NRF-2021R1A2C3010989, Republic of Korea; NSF Grants No. PHY-1913742, DGE- 1122492, WIPAC, the Wisconsin Alumni Research Foundation, United States; STFC Grant ST/N000277/1 and ST/K001337/1, United Kingdom; Grant No. 2017/02952-0 FAPESP, CAPES Finance Code 001, CNPq 131152/2020-3, Brazil.

Yale

Backup

Liquid Scintillator Veto

- Nal(Tl) detectors immersed in 2200 L active LAB liquid scintillator veto
 - Scintillator contained in acrylic vessel lined with reflector
- LS veto ~80% efficient at rejecting ⁴⁰K events

- Crystals wrapped in Teflon and encapsulated in copper housings
- Both ends of crystals coupled to low background PMTs through quartz windows
 - PMTs feature anode and dynode readout for high dynamic range (sub-keV to ~5 MeV)
- Full setup contained in light-tight copper case wrapped in reflector

COSINE-200 Sensitivity for Model-Dependent Analysis

• Sensitivity pairs well with ANAIS-112 for COSINE-200